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a b s t r a c t

New techniques allow for more efficient boundary integral algorithms to compute the
Dirichlet–Neumann map for Laplace’s equation in two-dimensional exterior domains. Nov-
elties include a new post-processor which reduces the need for discretization points with
50%, a new integral equation which reduces the error for resolved geometries with a factor
equal to the system size, systematic use of regularization which reduces the error even fur-
ther, and adaptive mesh generation based on kernel resolution.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The 1993 GGM paper [3] on solving Laplace’s equation and computing the Dirichlet–Neumann map on domains exterior
to M closed contours has fueled a rapid development in computational multicomponent fluid flow and multiphase materials
science [2,8,9,14]. There has also been some recent basic algorithmic development. The complexity in M of the original
scheme has been reduced, the stability for large M has been improved, and contours that lie close to each other can be trea-
ted efficiently [5–7]. This paper presents algorithmic improvements for domains exterior to just a single closed contour. It
has consequences for viscous fingering in a Hele–Shaw cell, a problem for which a computational race is going on [2,9] and
where the cost is dominated by the exterior Dirichlet–Neumann solver [2].

2. Mikhlin’s integral equation

Let D be a domain exterior to a contour C with positive orientation enclosing the origin. To simplify the transition be-
tween real and complex notation we shall make no distinction between points in the real plane R2 and points in the complex
plane C. Points in C will be denoted z or s. The exterior Dirichlet problem reads: find UðzÞ such that
. All rights reserved.
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DUðzÞ ¼ 0; z 2 D; ð1Þ
lim

D3z!s
UðzÞ ¼ f ðsÞ; s 2 C; ð2Þ
where f ðsÞ is the prescribed Dirichlet data.
In order to write (1) and (2) as a Fredholm second kind integral equation Mikhlin, see Section 31 of [11], suggested the

representation
UðzÞ ¼ 1
2p

Z
C

I
lðsÞds
s� z

� �
þ 1

2p

Z
C
lðsÞdjsj þ a log jzj; z 2 D; ð3Þ
where lðzÞ is a real dipole density and a is a real number.
The problem (1) and (2) does not have a unique solution. Asymptotic boundary conditions for UðzÞ at infinity are needed.

One can choose a solution with leading behavior a log jzj þ b, where either a is prescribed and b is unknown or b is prescribed
and a is unknown. We choose to prescribe a, since this seems to have most relevance for the viscous fingering problem. Let
the contour have a parameterization zðtÞ, p < t 6 q, so that zðpÞ ¼ zðqÞ. Let z0ðtÞ ¼ dzðtÞ=dt, lðtÞ ¼ lðzðtÞÞ, and f ðtÞ ¼ f ðzðtÞÞ.
Mikhlin’s integral equation then reads, see also Eq. (18) of [9],
lðtÞ � 1
p

Z q

p
I

lðsÞz0ðsÞds
zðsÞ � zðtÞ

� �
� 1

p

Z q

p
lðsÞjz0ðsÞjds ¼ 2a log jzðtÞj � 2f ðtÞ: ð4Þ
Upon solving (4) for lðtÞ the Dirichlet–Neumann map can be computed via
ðnz � rUÞðtÞ ¼ d
drt

I
1

2pi

Z q

p

lðsÞz0ðsÞds
zðsÞ � zðtÞ

� �
þ aR

nzðtÞ
z

� �
; ð5Þ
where drt is an infinitesimal element of arc length, nzðtÞ ¼ nx þ iny is the outward unit normal of C at zðtÞ, and the integral is
to be interpreted in the Cauchy principal value sense. See [3] for details.
3. Classic spectrally accurate Nyström schemes

The classic treatment of Mikhlin’s integral equation (4) is Nyström discretization with N nodes and weights, tj and wj,
according to the composite trapezoidal rule [3]. This gives superalgebraic convergence for the approximations to lðtjÞ.
The kernel in (4) has a limit for s! t which can be computed analytically and used for the diagonal entries of the system
matrix in the discretization. This is standard and done in [2,3,9]. In the discretization of the post-processor (5) one can
use the alternate point trapezoidal rule [13] for the Cauchy principal value integral and Fourier approximation and FFT
for the differentiation with respect to arc length. This retains superalgebraic convergence and is the choice in [3]. We refer
to this combination of methods as the scheme Classic I.

Alternatively, one can use partial integration, and rewrite (5) as
ðnz � rUÞðtÞ ¼ I
nzðtÞ
2p

Z q

p

l0ðsÞds
zðsÞ � zðtÞ

� �
þ aR

nzðtÞ
z

� �
; ð6Þ
where l0ðtÞ ¼ dlðtÞ=dt. This is the choice in [9], see their Eq. (19). We refer to the combination of the composite trapezoidal
rule in Mikhlin’s integral equation (4) and FFT differentiation and the alternate point trapezoidal rule in the post-processor
(6) as the scheme Classic II.

4. A new post-processor

For many reasons we prefer to use composite Gaussian quadrature when solving Fredholm second kind integral equations
numerically [6]. Still, for ease of comparison with the classic schemes, the developments of this section will be presented in
the composite trapezoidal rule environment.

The first modification has to do with the discretization of the kernel in Mikhlin’s equation (4). As an alternative to using
limits for the diagonal elements one can use regularization, that is, rewrite the integral operator as
1
p

Z q

p
I

lðsÞz0ðsÞds
zðsÞ � zðtÞ

� �
¼ lðtÞ þ 1

p

Z q

p
I
ðlðsÞ � lðtÞÞz0ðsÞds

zðsÞ � zðtÞ

� �
ð7Þ
prior to discretization. A discretization of the right hand side in (7) does not require any limits since the entire integrand
vanishes for s ¼ t. It is also often more accurate. For example, the action of the discretized regularized integral operator
on constant functions lðtÞ will always be numerically exact.

A disadvantage with the post-processor treatment in the classic schemes is that it does not use all available information
from the discrete solution lðtjÞ. The alternate point trapezoidal rule disregards every other lðtjÞ and therefore delays the
convergence of (5) and (6). To remedy this, we recommend regularization which, using the definition of the Cauchy principal
value, allows us to rewrite (6) as
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ðnz � rUÞðtÞ ¼ I
nzðtÞ
2p

Z q

p

l0 ðsÞ
z0ðsÞ �

l0 ðtÞ
z0 ðtÞ

� �
z0ðsÞds

zðsÞ � zðtÞ

8<
:

9=
;þ aR

nzðtÞ
z

� �
: ð8Þ
We shall use the standard – not alternate point – composite trapezoidal rule for (8).
A difference between the integrand of the right hand side of (7) and the integrand of (8) is that while the former does not

require any limits for s ¼ t, the latter does. So, in order to retain spectral accuracy in our new post-processor based on (8) we
need the integrand of (8) at s ¼ t with spectral accuracy. That is, we need l0ðtjÞ and also l00ðtjÞ with spectral accuracy. We
shall use Nyström differentiation. This technique, analogous in construction to Nyström interpolation, carries the conver-
gence properties of lðtjÞ over to l0ðtjÞ and l00ðtjÞ. See Eq. (28) of [6] and Chapter 4.1 of [1] for an error analysis of Nyström
interpolation. One gets
l0ðtjÞ ¼ 2aR
z0ðtjÞ
zðtjÞ

� �
� 2f 0ðtjÞ þ

1
p

Z q

p
I

z0ðtjÞlðsÞz0ðsÞds

ðzðsÞ � zðtjÞÞ2

( )
ð9Þ
and
l00ðtjÞ ¼ 2aR
z00ðtjÞ
zðtjÞ

� ðz
0ðtjÞÞ2

ðzðtjÞÞ2

( )
� 2f 00ðtjÞ þ

1
p

Z q

p
I

z00ðtjÞ
ðzðsÞ � zðtjÞÞ2

þ 2ðz0ðtjÞÞ2

ðzðsÞ � zðtjÞÞ3

" #
lðsÞz0ðsÞds

( )
; ð10Þ
where we have assumed that f ðtÞ can be differentiated analytically twice with respect to t. In viscous fingering f ðtÞ often
involves curvature.

Eqs. (9) and (10) need to be discretized, too. We use the composite trapezoidal rule. Here, as in the kernel of (4), com-
putable limits exist for s ¼ tj but again regularization
1
p

Z q

p
I

z0ðtjÞlðsÞz0ðsÞds

ðzðsÞ � zðtjÞÞ2

( )
¼ 1

p

Z q

p
I

z0ðtjÞðlðsÞ � lðtjÞÞz0ðsÞds

ðzðsÞ � zðtjÞÞ2

( )
ð11Þ
and
1
p

Z q

p
I

z00ðtjÞ
ðzðsÞ � zðtjÞÞ2

þ 2ðz0ðtjÞÞ2

ðzðsÞ � zðtjÞÞ3

" #
lðsÞz0ðsÞds
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p

Z q

p
I

z00ðtjÞ
ðzðsÞ � zðtjÞÞ2

þ 2ðz0ðtjÞÞ2

ðzðsÞ � zðtjÞÞ3

" #
ðlðsÞ � lðtjÞÞz0ðsÞds

( )
ð12Þ
is an interesting option since the integrands on the right hand sides of (11) and (12) vanish for s ¼ tj. In Section 7, we shall
see how this feedback of accurately computed numerical and analytical derivatives into the algorithm can lead to extreme
stability.
5. Differentiated integral equations

When a of (3) is prescribed and when, such as in (6) and (8), only the derivative of lðtÞ is of interest, one can differentiate
Mikhlin’s equation (4) with respect to t, use partial integration, and arrive at an integral equation for l0ðtÞ itself
l0ðtÞ � 1
p

Z q

p
I

z0ðtÞl0ðsÞds
zðsÞ � zðtÞ

� �
¼ 2aR

z0ðtÞ
zðtÞ

� �
� 2f 0ðtÞ: ð13Þ
Solving for l0ðtÞ, rather than for lðtÞ, reduces the need for numerical differentiation in the post-processor and the achievable
accuracy should be enhanced.

Choosing (8) and given l0ðtÞ with spectral accuracy, we only need l00ðtÞ with spectral accuracy. Equation (10) can be
rewritten
l00ðtjÞ ¼ 2aR
z00ðtjÞ
zðtjÞ

� ðz
0ðtjÞÞ2

ðzðtjÞÞ2

( )
� 2f 00ðtjÞ þ

1
p

Z q

p
I

z00ðtjÞ
ðzðsÞ � zðtjÞÞ

þ ðz0ðtjÞÞ2

ðzðsÞ � zðtjÞÞ2

" #
l0ðsÞds

( )
: ð14Þ
Here, for s ¼ tj, we only take limits.
Let vðzÞ be the harmonic conjugate to the part of UðzÞwhich comes from the first term on the right hand side of (3). When

a is prescribed, integral equations can be derived both for vðtÞ and for v 0ðtÞ. One possibility is
v 0ðtÞ þ 1
p

Z q

p
I

z0ðtÞv 0ðsÞds
zðsÞ � zðtÞ

� �
þ 1

p

Z q

p
v 0ðsÞds ¼ R

z0ðtÞ
p

Z q

p

ðhðsÞ � hðtÞÞz0ðsÞds
zðsÞ � zðtÞ

� �
; ð15Þ
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where
hðtÞ ¼ f 0ðtÞ
z0ðtÞ �

a
z0ðtÞR

z0ðtÞ
zðtÞ

� �
: ð16Þ
Having solved (15) for v 0ðtÞ, the Dirichlet–Neumann map can be computed via the simple post-processor free of numerical
differentiation
ðnz � rUÞðtÞ ¼ v 0ðtÞ
jz0ðtÞj þ aR

nzðtÞ
zðtÞ

� �
: ð17Þ
6. A regularized implementation of the fast multipole method

We intend to use the GMRES iterative solver [12] for linear systems and the fast multipole method (FMM) [4] for matrix–
vector multiplication. We choose an FMM code implemented in MATLAB, which is not so efficient speed wise and memory
wise but shares the characteristics of more efficient FMM implementations when it comes to operation count and error
propagation.

Our FMM code has two features that are not present in the original FMM scheme [4]. First, our code can compute poten-
tial fields due to particles of strengths qj located at points zj whose contribution to the field at a point zi is qj=ðzj � ziÞn, where
n is a positive integer given as input. This is a minor modification. Second, the code allows for the treatment of regularized
kernels in a new and more accurate way. Consider, as an example, the integral
Z q

p

gðtÞðlðsÞ � lðtÞÞz0ðsÞds
zðsÞ � zðtÞ ; ð18Þ
where gðtÞ and lðtÞ are known functions. Discretization gives
gðtiÞl0ðtiÞwi þ gðtiÞ
XN

j¼1
j – i

ðlðtjÞ � lðtiÞÞz0ðtjÞwj

zðtjÞ � zðtiÞ
; i ¼ 1; . . . ;N; ð19Þ
or, mathematically equivalent,
gðtiÞl0ðtiÞwi þ gðtiÞ
XN

j¼1
j – i

lðtjÞz0ðtjÞwj

zðtjÞ � zðtiÞ
� gðtiÞlðtiÞ

XN

j¼1
j – i

z0ðtjÞwj

zðtjÞ � zðtiÞ
; i ¼ 1; . . . ;N: ð20Þ
The two sums in (20) can be evaluated for all i with two standard FMM calls. The single sum in (19) is harder to evaluate
throughout the FMM as it stands. But the sum in (19) has the advantage over the sums in (20) in that its individual terms
do not blow up as tj ! ti. The effect of accumulated roundoff error in the summation is therefore much smaller. As a com-
promise between speed and accuracy we implement the following option: single sums such as (19) are treated as two sep-
arate sums in parallel in all parts of the FMM except for where the field due to nearest neighbors is computed directly. There,
the single sum is used. After all, it is only in the nearest-neighbor interaction that zðtjÞ is close to zðtiÞ. The cost of such a
single regularized FMM call is roughly the same as the cost of the two standard FMM calls needed for (20).

We expect regularized FMM to have impact on the discretized equations (8), (11), and (12), where terms in sums could be
very large in modulus. We do not expect impact on (4) with (7), where large terms only appear in the real part of the inte-
grand within curly brackets. Here standard FMM will always be used. The imaginary part of the second sum of (20) with
gðtÞ ¼ 1, appearing on the diagonal of the system matrix in this context, only has to be computed once and stored prior
to starting GMRES.

7. A numerical example

We now present a numerical convergence study performed in MATLAB on a SunBlade 100 workstation. We compare five
schemes: Classic I and Classic II of Section 3 using standard FMM, New I being the combination of Mikhlin’s integral equation
(4) and the post-processor (8) with (9) and (10) using limits and standard FMM, New II being the combination of Mikhlin’s
integral equation (4) with (7) using standard FMM and the post-processor (8) with (9) and (10) using (11) and (12) and reg-
ularized FMM, and New III being the combination of the differentiated integral equation (13) and the post-processor (8) with
(14) using limits and standard FMM.

The domain exterior to the contour of Fig. 1 is taken as a test example. The boundary and its parameterization are given
by
zðtÞ ¼ 1þ
X10

k¼2

ak cosðkt þ bkÞ
 !

eit; �p < t 6 p; ð21Þ
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Fig. 2. Convergence of the Dirichlet–Neumann map on the boundary of the domain in Fig. 1 with Dirichlet data as in (22). The L2 error (23) is shown as a
function of the number of discretization points N for the classic schemes using (5) and (6) and for the new post-processor (8) in combination with both
Mikhlin’s integral equation (4) and the differentiated integral equation (13).
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Fig. 1. A domain exterior to a butterfly shaped contour. The stars indicate where the sources and sinks of the reference solution (22) are located.
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where ak and bk are random numbers in ½0;0:2� and ½�p;p�. The composite trapezoidal rule then corresponds to equal polar
angles between the discretization points. This should be a reasonable choice in this particular example considering the loca-
tion of boundary parts with high curvature and extra need for resolution. Parameterization in arc length could be preferable
for other boundary shapes. The function
UrefðzÞ ¼ 1þ 1:5 log jz� z1j þ 1:5 log jz� z2j � 2 log jz� z3j; z 2 D; ð22Þ
where z1, z2, and z3 are marked by stars in Fig. 1, is used for Dirichlet data f ðsÞ in (2) and also for Neumann data in the error
estimate (23) below. The coefficient a, which must be prescribed in (4) and (13), is taken as a ¼ 1 to ensure that the numer-
ical schemes seek lðtÞ compatible with (22).

The linear systems of the five schemes are solved with the GMRES iterative solver including a low-threshold stagnation
avoiding technique [6] and a stopping criterion threshold in the relative residual set to machine epsilon ð�mach � 2� 10�16Þ.
The precision in the FMM is also set to �mach. The FFT differentiation, needed in Classic I and Classic II, is carried out with
Matlab’s built-in functions fft and ifft.

Fig. 2 shows how the L2 error
E ¼
PN

j¼1jðnz � rUrefÞðtjÞ � ðnz � rUÞðtjÞj2jz0ðtjÞjwjPN
j¼1jðnz � rUrefÞðtjÞj2jz0ðtjÞjwj

 !1=2

ð23Þ
depends on the number of discretization points N. All five schemes exhibit superalgebraic convergence. But one can see how
the classic schemes, which use the alternate point trapezoidal rule in the post-processor, require twice as many discretiza-
tion points to reach a given relative error as do the new schemes, which use the composite trapezoidal rule throughout.

Fig. 2 also shows that overresolution makes the L2 errors of Classic I, Classic II, and New I grow like OðN2Þ. This is typical for
algorithms involving numerically computed second derivatives (computing l0ðtÞ is one derivative and computing the Cauchy
principal value has the effect of yet another derivative). The highest achievable accuracy is around 10�10 for Classic I and Clas-
sic II and around 10�11 for New I. Clearly, for geometries that require a finer grid than our ‘‘butterfly” to be resolved and when
high accuracy is of importance, this asymptotic behavior is not at all good. The schemes New II and New III, on the other hand,
behave better. The L2 error for New III grows like OðNÞ, which is typical for algorithms involving numerically computed first
derivatives. The highest achievable accuracy is around 10�14. The L2 error of New II is even smaller. The minor jumps in the
error that are visible for N ¼ 10804, 17714, 42088, and 78094 correspond to system sizes where FMM decides to introduce
yet one level of refinement and where, consequently, the regularized FMM uses less direct evaluation of single sums. See
Section 6.

A few words about the computational costs of the five schemes in this example are in order. GMRES typically reaches its
stopping criterion threshold for the discretized integral equations (4) and (13) in 35 iterations. This requires 35 standard
FMM calls if limits are used and 36 standard FMM calls if (7) is used. To this should be added FMM and FFT differentiation
calls needed for the post-processor. The total number of calls for the Dirichlet–Neumann solver is then 36 standard FMM
calls and one FFT differentiation call for the Classic I and Classic II schemes, 39 standard FMM calls for the New I scheme,
36 standard FMM calls and three regularized FMM calls for the New II scheme, and 38 standard FMM calls for the New III
scheme.

Naturally, other interesting combinations of techniques than the schemes of this section are possible. For example, the
Classic II scheme can be improved with the regularization (7) in (4). FFT differentiation can be used instead of Nyström dif-
ferentiation in the New I scheme to gain speed. Eq. (15) with (17) can improve on accuracy for underresolved systems. Nev-
ertheless, as a crude conclusion we can say that switching from a classic scheme to a new scheme in this example requires at
most 10% more FMM calls for a given accuracy, but only half the system size. The net savings in total computational time
could be around 45%.

8. A priori error estimates and adaptive mesh generation

When computing, one often wants a particular accuracy, perhaps the best possible, in the final answer at a low cost. The
number of discretization points N needed and their placement should be known in advance. This section addresses such is-
sues of a priori error estimates and adaptive mesh generation. We shall abandon the composite trapezoidal rule in favor of
composite Gauss–Legendre quadrature based on n panels with 16 quadrature points each. Composite 16-point Gauss–Legen-
dre quadrature on a uniform mesh may be 25–50% more expensive than the trapezoidal rule, depending on the required
accuracy. Its advantage, however, is that it lends itself better to mesh adaptivity. While the purpose of mesh adaptivity is
to minimize the computational cost, a pleasant side effect is that the particular choice of boundary parameter becomes less
important. Since the mesh is refined only where it is needed, the effects of sub-optimal parameterizations are fully counter-
balanced. One is free to choose a parameterization which suites a given geometry from a modeling point of view. Given a
specified resolution tol, we construct an ad hoc algorithm which finds an adaptive panel-mesh and a grid of discretization
points which meets this resolution and link it to the overall accuracy. For brevity we only consider (13) in combination with
(8) and (14).

Our basic idea is the following: let a well-conditioned integral equation of Fredholm’s second kind with an integral oper-
ator K, an unknown density l, and a right hand side f be discretized on a grid on a coarse panel-mesh
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ðIþ KÞl ¼ f; ð24Þ
where the kernel is not fully resolved by the underlying quadrature, and on a grid on a fine panel-mesh
ðIfin þ KfinÞlfin ¼ ffin; ð25Þ
where it is resolved. Define the error in the coarse discretization due to insufficient quadrature resolution as
EresK ¼ kKW�1PT Wfin � QKfink1; ð26Þ
where W and Wfin are diagonal matrices containing the quadrature weights of the two discretizations, P is a discretization of
a prolongation operator that performs piecewise polynomial interpolation in parameter from discretization points on coarse
panels to points on fine panels, and Q is a discretization of a restriction operator that performs piecewise polynomial inter-
polation in the other direction. We shall refine the coarse mesh just as much that is needed to make EresK meet tol. The rel-
ative error in l is then approximately bounded by
kl� lfink
klfink

6 tolkðIþ KÞ�1k; ð27Þ
see Section 4.5 of Ref. [10]. Rather than working with the entire matrix K, we shall work with select submatrices of a fixed
size. We shall refine the mesh until these submatrices, individually, resolve their parts of the kernel. It is assumed that the
right hand side f, by then, also is resolved.

We shall now be more precise. Let K be the 16n� 16n matrix corresponding to the discretized integral operator of (13) on
an n-panel-mesh. Let Ci and Cj, i – j ¼ 1; . . . ;n, be two panels on C with arc lengths li and lj. Let Ki;j be the 16� 16 submatrix
of K with source points on Cj and target points on Ci. Let Ai;j be the 32� 16 submatrix containing the blocks Ki;j and Kj;j
Ai;j ¼ Ki;j

Kj;j

" #
: ð28Þ
We shall sweep j from 1 to n and for each j make sure that Ai;j and Aj;i resolve their parts of the kernel for all i belonging to
panels Ci separated less than a distance 2 �maxðli; ljÞ from Cj. If, for an i in this set, Ai;j does not resolve its part of the kernel,
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blem is the same as in Fig. 2 and the presentation of data is done as to facilitate comparison. But note that N is variable in Fig. 2, while the specified
riable in this figure.



J. Helsing / Journal of Computational Physics 228 (2009) 2578–2586 2585
then Cj is subdivided. If Aj;i does not resolve its part of the kernel, then Ci is subdivided. If neither Ai;j nor Aj;i do resolve their
parts of the kernel, then the source-panel corresponding to the submatrix that resolve its part of the kernel least well is sub-
divided. After subdivision, n is increased by one. The work can be organized as to avoid repeated computation of identical
quantities.

It remains to modify the resolution estimator (26) so that it applies to submatrices Ai;j and link it to the overall specified
tolerance. For each row in the matrix of (26), the major contributions to the 1-norm come only from a few submatrices.
Considering the approximate nature of the whole approach we simply use
Ei;j
resA ¼ kA

i;jðWjÞ�1PT Wj
fin � QAi;j

fink1: ð29Þ
Here the 16� 16 diagonal matrix Wj contains the quadrature weights associated with 16-point Gauss–Legendre quadrature
on Cj. As an approximation to the fully resolved kernel part Ai;j

fin we choose a 48� 32 discretization where Cj has been sub-
divided into two sub-panels Cja and Cjb equisized in parameter
Ai;j
fin ¼

Ki;ja Ki;jb

Kja;ja Kja;jb

Kjb;ja Kjb;jb

2
64

3
75: ð30Þ
The 32� 32 diagonal matrix Wj
fin in (29) contains the quadrature weights on Cja and Cjb. The 32� 16 matrix P performs 15th

degree polynomial interpolation in parameter from points on Cj to points on Cja and Cjb. The upper left 16� 16 block of the
sparse 32� 48 matrix Q is the identity matrix and its sparse lower right 16� 32 block performs piecewise 15th degree poly-
nomial interpolation in parameter from points on Cja and Cjb to points on Cj. Note that P and Q are independent of j and that
the application of PT to the left can be sped up via a sparse factorization, see Section 5.1 of Ref. [6].

The resolution estimator (29) measures how well a part of the kernel is resolved on a grid by interpolation in the variable
of integration by some of the basis functions that underly the quadrature. Our interpolating polynomials have degree 15.
Gaussian quadrature has polynomial degree 31, that is, twice as much. Therefore the resolution estimator is more related
to the square root of the resolution sought than to the resolution itself and we take
Ei;j
resA <

ffiffiffiffiffiffi
tol
p

; ð31Þ
as our criterion for when Ai;j does resolve its part of the kernel to the specified resolution.
Fig. 3 shows that our simple algorithm has a remarkable ability to predict the relative error in the Dirichlet–Neumann

map for values of tol down to 10�14, which is the highest accuracy achieved for New III in Section 7. The specified tol differs
from the actual error at most with a factor of ten. The scheme is economical, too. It consistently outperforms the five
schemes of Section 7 in terms of high accuracy with few discretization points. The number of points needed to get a given
relative accuracy is reduced by over 60% compared to the classic schemes. But the best advantage with mesh adaptivity is
that one does not have to worry about what N gives the highest accuracy. One can simply set tol ¼ �mach and compute once.

9. Conclusions

Boundary integral algorithms for viscous fingering simulation are seen as relatively mature and their computational com-
plexity may not have improved since 1994, see Ref. [2] and references therein. Still, this paper shows that there is plenty of
room for improvement when it comes to computational economy and achievable accuracy. That is, in the part of the simu-
lations that involve the Dirichlet–Neumann solver, which currently is the dominating cost. We have modified the integral
equation itself and the post-processor and introduced adaptive mesh generation. This, everything else held constant, should
open up for algorithms that are at least twice as fast and an order of magnitude more accurate.
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